如何用A、B、C、D、E、F、G造句?
发布时间:
2025-02-26 15:20
阅读量:
1
注意到有以下句子:
- 数学分析:Absolute Boundedness Conditions for Differential Equations on Finite Groups
- 解析几何:Arbitrary Binary Calculations Determine Exact Functional Graphs
- 初等数论:Arithmetic Bases Converting Decimal Expansions For Grouping
- 代数几何:Affine Bundles Coordinated by Divisor Equations Forming Groups
- 微分流形:Algebraic Bundles Create Differential Equations For Geometric
- 代数拓扑:Axiomatic Brouwer's Conjecture Demonstrates Essential Functorial Groupoid
- 微分拓扑:Analytical Bases Constituting Differential Equations For Geometries
- 交换代数:Algebraic Basis Change Drives Equational Formulations Generically
- 泛函分析:Approximation By Compact Dual Eigenvalue Functional Groups
- 线性代数:Affine Bundles Coordinate Diagonalizations Enabling Functional Geometries
- 范畴拓扑:Algebraic Bases Constructing Diagrammatic Equivalences From Groupoids
- 交换代数:Associative Bialgebras Commutative Diophantine Equations Formulate Grothendieck
- 拓扑流形:Atlas Bundles Covering Differentiable Extensions Forming Gluings
- 非欧几何:Angular Bisectors Constructing Divergent Elliptical Fractals Generation
- 椭圆几何:Angular Bisectors Create Distinctive Elliptical Forms Generating Geodesics
- 李代数:Algebras Bracket Closure Defines Exact Finite Groups
- 复变流形:Analytic Bundles Characterize Differential Extensions Forming Geometric
- 测度论:Almost Borel Constructions Define Exact Finite Geometries
- 实数论:Arithmetic Bases Compose Dense Extensions Forming Geodesics
- 复数论:Analytic Branches Covering Discs Extend Fundamental Geometries
- 代数数论:Algebraic Bases Contribute Diophantine Equations For Galois
- 布尔代数:Algebraic Binary Calculus Determines Exclusively Finite Geometries
- 图论:Adjacent Bridges Connect Diverse Environments Forming Geometric
- 海廷代数:Algebras Based on Coxeter Diagrams Enable Fundamental Groupoid
说点Python的吧:
我们有:
Abstract Base Classes Define Evaluation Functions & Generators
(抽象基类定义了评估函数与生成器)
彩蛋:ABC的风格,爱编程的风格,阿百川得分高
—————————
8/23:502赞纪念
END